МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ТУЙМАЗИНСКИЙ ГОСУДАРСТВЕННЫЙ ЮРИДИЧЕСКИЙ КОЛЛЕДЖ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ **АРХИТЕКТУРА ЭВМ И ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ**

Рекомендуется для студентов специальности 09.02.05 Прикладная информатика (по отраслям) (базовый уровень)

Форма обучения очная

Рассмотрено на заседании кафедры компьютерных технологий	Утверждаю зам. директора по УР
«31» августа 2021г.	« 31 » августа 2021г.

Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта (далее – ФГОС) по специальности профессионального образования (далее - СПО) 09.02.05 «Прикладная информатика (по отраслям)», утвержденного Министерством образования и науки РФ 13.08.2014 г. приказ № 1001 и зарегистрированного в Министерстве юстиции РФ 25.08.2014 N 33795

Организация-разработчик: ГАПОУ Туймазинский государственный юридический колледж

Разработчики:

Кузнецов В.В., преподаватель кафедры компьютерных технологий Канищев А.В., преподаватель кафедры компьютерных технологий

СОДЕРЖАНИЕ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	стр. 4
2. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ	5
3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	6
4. УСЛОВИЯ РЕАЛИЗАЦИИ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	15
5. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	16
6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ	17

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ «Архитектура электронно-вычислительных машин и вычислительные системы»

1.1. Область применения программы

Рабочая программа учебной дисциплины является частью основной профессиональной образовательной программы в соответствии с ФГОС СПО по специальности 09.02.05 «Прикладная информатика» (по отраслям) (базовая подготовка), входящей в укрупненную группу специальностей 09.00.00 Информатика и вычислительная техника.

1.2. Место дисциплины в структуре программы подготовки специалистов среднего звена:

Учебная дисциплина «Архитектура электронно-вычислительных машин и вычислительные системы» входит в обязательную часть общепрофессионального цикла.

«Архитектура Дисциплина электронно-вычислительных машин вычислительные системы» имеет междисциплинарные связи с другими дисциплинами ППССЗ. Обеспечивающими по отношению к дисциплине «Архитектура электронно-вычислительных машин И вычислительные системы» являются дисциплины «Операционные системы и среды», «Основы теории информации». В свою очередь знания и умения по дисциплине «Архитектура электронно-вычислительных машин И вычислительные системы» необходимы при изучении профессионального модуля ПМ 01. «Обработка отраслевой информации».

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины:

В результате освоения учебной дисциплины «Архитектура электронновычислительных машин и вычислительные системы» обучающийся должен

уметь:

- определять оптимальную конфигурацию оборудования и характеристик устройств для конкретных задач;
- идентифицировать основные узлы персонального компьютера, разъемы для подключения внешних устройств;
- обеспечивать совместимость аппаратных и программных средств вычислительной техники (BT).

знать:

- построение цифровых вычислительных систем и их архитектурные особенности;
 - принципы работы основных логических блоков системы;
 - параллелизм и конвейеризацию вычислений;
 - классификацию вычислительных платформ;
 - принципы вычислений в многопроцессорных и многоядерных системах;

- принципы работы кэш-памяти;
- методы повышения производительности многопроцессорных и многоядерных систем;
 - основные энергосберегающие технологии.

1.4. Рекомендуемое количество часов на освоение программы лисциплины:

максимальной учебной нагрузки обучающегося 138 часов, в том числе:

- обязательной аудиторной учебной нагрузки обучающегося 92 часов;
- самостоятельной работы обучающегося 46 часов.

2. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины у обучающихся должны быть сформированы следующие общие и профессиональные компетенции, включающие в себя способность:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- OK 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- OK 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
 - ПК 1.2. Обрабатывать динамический информационный контент.
 - ПК 1.3. Осуществлять подготовку оборудования к работе.

- ПК 1.4. Настраивать и работать с отраслевым оборудованием обработки информационного контента.
- ПК 1.5. Контролировать работу компьютерных, периферийных устройств и телекоммуникационных систем, обеспечивать их правильную эксплуатацию.
- ПК 3.3. Проводить обслуживание, тестовые проверки, настройку программного обеспечения отраслевой направленности.
 - ПК 4.1. Обеспечивать содержание проектных операций.
 - ПК 4.4. Определять ресурсы проектных операций.

3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	138
Обязательная аудиторная учебная нагрузка (всего)	92
в том числе:	
лабораторные занятия	10
практические занятия	20
контрольные работы	-
Самостоятельная работа обучающегося (всего)	46
Итоговая аттестация в форме экзамена	

3.2. Тематический план и содержание учебной дисциплины «Архитектура электронно-вычислительных машин и вычислительные системы»

Наименование разделов и тем	Содержание учебного материала, лабораторные и практические работы, самостоятельная работа обучающихся, курсовая работ (проект)	Объем часов	Уровень усвоения
1	2	3	4
Раздел 1. Принципы		108	
построения и архитектура ЭВМ			
Тема 1.1. Основные	Содержание учебного материала	5	1
характеристики ЭВМ	1. Начало современной истории электронной вычислительной техники. 2. Структура электронной вычислительной машины.	3	
	3. Характеристики электронной вычислительной машины.		
	Лабораторные работы - не предусмотрены	<u> </u>	_
	Практические занятия - не предусмотрены	<u> </u>	4
	Контрольные работы - не предусмотрены	<u> </u>	4
	Самостоятельная работа обучающихся	2	
	1. Графическое построение структуры электронной вычислительной машины		
Тема 1.2. Классификация	Содержание учебного материала	6	2
ЭВМ	1. Поколение ЭВМ.	3	7
	2. Построение структурных схем ЭВМ.		
	3. Классификация ЭВМ по этапам создания.		
	4. Классификация средств вычислительной техники по принципу действия.		
	5. Классификация ЭВМ по быстродействию.		
	6. Классификация вычислительных платформ.		
	7. Персональные компьютеры.		
	Лабораторные работы - не предусмотрены	-	
	Практические занятия	1	
	1. Построение структурной схемы аналоговой вычислительной машины	1	
	2. Построение структурной схемы гибридной вычислительной машины	7	
	Контрольные работы (не предусмотрены)	-	
	Самостоятельная работа обучающихся	2	
	1. Проанализировать отличия принципов работы аналоговых и цифровых ЭВМ.]	

Тема 1.3. Общие принципы	Содержание учебного материала	9	2
построения современных	1. Классическая архитектура Джона фон Неймана.	5	
ЭВМ	2. Понятие программного управления, как основного принципа построения		
	современных ЭВМ.		
	3. Структурная схема ЭВМ по поколениям.		
	4. Структурная схема ПЭВМ.		
	5. Система команд.		
	6. Способы обращения к данным.		
	7. Понятие параллелизма и конвейеризации вычислений.		
	8. Функции программного обеспечения.		
	Лабораторные работы - не предусмотрены	-	
	Практические занятия	1	
	1. Построение структурной схемы персонального компьютера		
	2. Принцип работы команды, на примере двухадресной команды		
	Контрольные работы - не предусмотрены	-	
	Самостоятельная работа обучающихся	3	
	1. Построение схемы работы трехадресной и безадресной команды		
	2. Построить схему классической архитектуры Джона фон Неймана, расписав в		
	ней все устройства ЭВМ		
Тема 1.4. Математические и	Содержание учебного материала	10	2
логические основы ЭВМ	1. Представление информации в ЭВМ.	5	
	2. Математические основы ЭВМ.		
	3. Машинные коды.		
	4. Арифметические операции над числами с фиксированной точкой.		
	5. Арифметические операции над двоичными числами с плавающей точкой.		
	6. Основные сведения из алгебры логики.		
	7. Техническая интерпретация логических функций.		
	8. Принципы работы основных логических блоков системы.		
	Лабораторные работы - не предусмотрены	-	
	Практические занятия	2	
	1. Представление чисел в формат ЭВМ		
	2. Представление информации в формат ЭВМ		
	Контрольные работы - не предусмотрены	-	
	Самостоятельная работа обучающихся	3	

	1. Представить заданные числа в формат ЭВМ.		
	2. Провести арифметические операции над заданными числами с фиксированной		
	точкой и над двоичными числами с плавающей точкой		
Тема 1.5. Функциональная и	Содержание учебного материала	10	2
структурная организация	1. Классификация элементов и узлов ЭВМ.	5	_
ЭВМ	2. Варианты организации ЭВМ.	3	
32	3. Организация функционирования ЭВМ с магистральной архитектурой.		
	4. Организация работы ЭВМ при выполнении задания пользователя.		
	5. Отображение адресного пространства программы на основную память.		
	6. Адресная структура команд микропроцессора и планирование ресурсов.		
	7. Виртуальная память.		
	8. Система прерываний ЭВМ.		
	Лабораторные работы - не предусмотрены	-	
	Практические занятия	2	
	1. Структурная схема центрального процессора, структурная схема оперативного		
	запоминающего устройства. Определение слота для оперативной памяти, и гнезда		
	для процессора.		
	2. Организация функционирования ЭВМ с магистральной архитектурой.		
	3. Работа с прерываниями.		
	Контрольные работы - не предусмотрены	-	
	Самостоятельная работа обучающихся	3	
	1. Проанализировать отличия принципов работы ЭВМ с магистральной		
	архитектурой и ЭВМ при выполнении задания пользователя.		
	2. Для всех устройств компьютера определить прерывания.		
Тема 1.6. Центральные	Содержание учебного материала	10	2
устройства ЭВМ	1. Основная память.	5	
	2. Состав, устройство и принцип действия основной памяти.		
	3. Размещение информации в основной памяти.		
	4. Центральный процессор ЭВМ.		
	5. Структура базового микропроцессора.		
	6. Система команд микропроцессора.		
	7. Взаимодействие элементов при работе микропроцессора.		
	8. Работа микропроцессора при выполнении программного прерывания.		
	Лабораторные работы - не предусмотрены	-	

	Практические занятия	2	
	1. Установка на системную плату процессора и охлаждения для него.		
	2. Установка оперативной памяти и настройка параметров в BIOS для нее.		
	Контрольные работы - не предусмотрены	-	-
	Самостоятельная работа обучающихся	3	
	1. Описать все гнезда для процессоров фирмы Intel и AMD.		
	2. Определить вид оперативной памяти по заданным изображениям.		
Тема 1.7. Кэш-память	Содержание учебного материала	4	1
	1. Статическая и динамическая память.	2	
	2. Понятие кэш-памяти		
	3. Принципы работы кэш-памяти		
	Лабораторные работы - не предусмотрены	-	
	Практические занятия - не предусмотрены	_	-
	Контрольные работы - не предусмотрены	_	-
	Самостоятельная работа обучающихся	2	
	1. Описать организацию работы кэш-памяти L1, L2 и L3.		
Тема 1.8. Внутренние	Содержание учебного материала	18	3
устройства ЭВМ	1. Системная плата и ее основные параметры.	6]
-	2. Системная шина.		
	3. Дисковые интерфейсы.		
	4. Слоты системной платы.		
	5. Видео адаптер и его характеристики.		
	6. Звуковая карта.		
	7. Сетевая плата.		
	8. Накопитель на жестком магнитном диске		
	9. Оптические приводы и флэш карты.		
	10. Системный блок и блок питания. Система охлаждения.		
	Лабораторные работы	4	
	1. Разборка компьютера.		
	2. Подключение жестких дисков с разными интерфейсами.		
	3. Установка видео адаптера, звуковой и сетевой плат.		
	4. Сборка компьютера.		
	Практические занятия	2	
	1. Конфигурирование устройств с помощью джамперов.		

	2. Замена устройств на компьютере.		
	Контрольные работы - не предусмотрены	_	
	Самостоятельная работа обучающихся	6	
	1. Поменять видео адаптер на компьютере.		
	2. Сконфигурировать жесткий диск IDE с помощью джамперов.		
	3. Установить сетевую карту на компьютер.		
	4. Подключить BR привод к компьютеру.		
Тема 1.9. Внешние	Содержание учебного материала	14 5	3
устройства ЭВМ	1. Устройство ввода/вывода.	5	
	2. Системы визуального отображения информации.		
	3. Периферийные устройства.		
	4. Устройства телекоммуникации.		
	5. Кабели и разъемы для подключения устройств.		
	Лабораторные работы	4	
	1. Подключение и настройка системы визуального отображения информации к		
	компьютеру.		
	2. Подключение периферийных устройств с выбором верного разъема и кабеля.		
	3. Организация работы устройств телекоммуникации.		
	Практические занятия	2	
	1. Идентифицирование основных узлов персонального компьютера, и разъемов		
	для подключения внешних устройств		
	2. Определение совместимости аппаратных и программных средств компьютера.		
	Контрольные работы - не предусмотрены	_	
	Самостоятельная работа обучающихся	3	
	1. Произвести настройку устройств – мышь, клавиатура, монитор.		
	2. Произвести установку и настройку устройств – принтер, сканер, МФУ.		
Тема 1.10. Управление	Содержание учебного материала	7	3
внешними устройствами	1. Принципы управления.	4	
	2. Прямой доступ к памяти.		
	3. Интерфейс системной шины.		
	4. Способы организации совместной работы периферийных и центральных		
	устройств.		
	5. Последовательный и параллельный интерфейсы ввода-вывода.		
	Лабораторные работы - не предусмотрены	-	

	Практические занятия	1	
	1. Управление внешними устройствами посредством ПК.		
	2. Запись и чтение с портов устройств.		
	Контрольные работы - не предусмотрены	-	
	Самостоятельная работа обучающихся	2	
	1. Произвести управление внешними устройствами через порты.		
	2. Произвести управление устройствами с помощью политик.		
Тема 1.11. Выбор,	Содержание учебного материала	13	3
конфигурирование,	1. Оценка конфигурации компьютера.	5	
модернизация и тестирование	2. Выбор оптимальной конфигурации в зависимости от решаемых задач.		
ЭВМ	3. Модернизация компьютера.		
	4. Тестирование компьютера и его основных устройств.		
	Лабораторные работы	2	
	1. Тестирование основных блоков ПК и их замена.		
	Практические занятия	2	
	1. Выбор компьютера по аппаратной совместимости.		
	2. Работа с прайс-листом. Сборка компьютеров по прайс-листу в зависимости от		
	решаемой задачи (игровая система, офисный или домашний компьютер).		
	Контрольные работы - не предусмотрены	-	
	Самостоятельная работа обучающихся	4	
	1. Протестировать все блоки ПК с помощью программного обеспечения.		
	2. Выполнить сборку компьютера для видеомонтажа по прайс-листу.		
Тема 1.12.	Содержание учебного материала	4	2
Энергосберегающие	1. Амортизация и сбои в электрической сети.	2	
технологии использования	2. Сетевые фильтры и источники бесперебойного питания.		
вычислительной техники	3. Экономия электроэнергии.		
	Лабораторные работы - не предусмотрены	-	
	Практические занятия	1	
	1. Замена блока питания компьютера.		
	2. Установка источника бесперебойного питания.		
	Контрольные работы - не предусмотрены	-	
	Самостоятельная работа обучающихся	1	
	1. Изложить основные принципы работы источника бесперебойного питания, и		
	обосновать необходимость его использования.		

Раздел 2. Архитектура		30	
вычислительных систем			
Тема 2.1. Классификация	Содержание учебного материала	6	1
вычислительных систем	1. Понятие вычислительной системы.	4	
	2. Основные принципы построения, закладываемые при создании ВС.		
	3. Классификация вычислительных систем.		
	Лабораторные работы - не предусмотрены	-	
	Практические занятия - не предусмотрены	-	
	Контрольные работы - не предусмотрены	-	
	Самостоятельная работа обучающихся	2	
	1. Составить описание современной вычислительной системы и входящих в ее		
	состав устройств.		
Тема 2.2. Архитектура	Содержание учебного материала	8	1
вычислительных систем	1. Понятие архитектуры вычислительных систем.	3	
	2. Классификация архитектур по Флинну.		
	3. Отличительные особенности архитектур.		
	Лабораторные работы - не предусмотрены	-	
	Практические занятия	2	
	1. Принципы работы систем Флинна по классам.		
	Контрольные работы - не предусмотрены	-	
	Самостоятельная работа обучающихся	3	
	1. Описать схематично принцип работы вычислительных систем.		
	2. Произвести сравнение зависимость стоимости ВС и ЭВМ от		
	производительности.		
Тема 2.3. Комплексирование	Содержание учебного материала	8	2
в вычислительных системах	1. Понятия комплексирования	3	
	2. Понятия аппаратурной и программной совместимости		
	3. Уровни комплексирования.		
	4. Средства комплексирования.		
	Лабораторные работы - не предусмотрены	-	
	Практические занятия	2	
	1. Учет совместимости аппаратурный, программный и информационный.		
	2. Единые стандарты аппаратуры, унифицированные средства соединения,		
	параметры электрических сигналов, алгоритмы взаимодействия.		

	Контрольные работы - не предусмотрены		
		3	_
	Самостоятельная работа обучающихся	3	
	1. Произвести организацию совместимости при передачи из одного технического		
	средства в другое.		
	2. Организовать в ВС передачу данных несколькими путями.		
Тема 2.4. Типовые структуры	Содержание учебного материала	8	2
и организация	1. Типовые структуры ВС.	2	
функционирования	2. Управление вычислительными процессами в ВС.		
вычислительных систем	3. Программное обеспечение многопроцессорных ВС.		
	4. Принципы вычислений в многопроцессорных и многоядерных системах.		
	5. Методы повышения производительности многопроцессорных и многоядерных		
	систем.		
	Лабораторные работы (не предусмотрены)	-	
	Практические занятия	2	
	1. Тестирование и мониторинг производительности в многопроцессорных и		
	многоядерных системах.		
	2. Повышение производительности многопроцессорных и многоядерных систем.		
	Контрольные работы (не предусмотрены)	-	
	Самостоятельная работа обучающихся	4	
	1. Произвести мониторинг симметричных многопроцессорных систем.		
	2. Произвести управление вычислительными процессами в ВС.		
	Всего:	138	

Для характеристики уровня освоения учебного материала используются следующие обозначения: 1. – ознакомительный (узнавание ранее изученных объектов, свойств); 2. – репродуктивный (выполнение деятельности по образцу, инструкции или под руководством)

- 3. продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)

4. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ

4.1. Требования к минимальному материально-техническому обеспечению

Реализация программы дисциплины требует наличия учебного кабинета «Архитектуры ЭВМ и ВС».

Оборудование учебного кабинета «Архитектуры ЭВМ и ВС»: рабочие столы и стулья для обучающихся; рабочий стол и стул для - преподавателя;

доска классная; комплекты наглядных пособий.

Технические средства обучения:

- компьютеры, комплектующие и внешние устройства;
- мультимедиа-система для показа презентаций;
- программное обеспечение общего назначения.

4.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные источники:

- 1. Максимов Н. В., Попов И. И., Партыка Т. Л., Архитектура ЭВМ и вычислительных систем, 2015, Издательство «Форум».
- 2. Назаров А.В., Зверева В.П., Технические средства информатизации Учебник. Москва: КУРС: ИНФРА-М, 2021. 256 с.
- 3. Толстобров, А. П. Архитектура ЭВМ : учебное пособие для среднего профессионального образования / А. П. Толстобров. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2020. 154 с.
- 4. Новожилов, О. П. Архитектура компьютерных систем в 2 ч. Часть 1 : учебное пособие для среднего профессионального образования / О. П. Новожилов. Москва : Издательство Юрайт, 2020. 276 с.
- 5. znanium.com электронная библиотека

Дополнительные источники:

- 1. Технические средства информатизации, учебник, Зверева В.П., Назаров А.В., 2018
- 2. Назаров А.В., Зверева В.П., Технические средства информатизации: Учебник. Москва: КУРС: ИНФРА-М, 2021. 256 с.

5. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения лабораторных и практических работ, тестирования, а также выполнения обучающимися индивидуальных заданий.

Результаты обучения (освоенные умения, усвоенные знания)

В результате освоения учебной дисциплины обучающийся должен **уметь**:

- определять оптимальную конфигурацию оборудования и характеристик устройств для конкретных задач;
- идентифицировать основные узлы персонального компьютера, разъемы для подключения внешних устройств;
- обеспечивать совместимость аппаратных и программных средств вычислительной техники (BT).

В результате освоения учебной дисциплины обучающийся должен **знать**:

- построение цифровых вычислительных систем и их архитектурные особенности;
- принципы работы основных логических блоков системы;
- параллелизм и конвейеризацию вычислений;
- классификацию вычислительных платформ;
- принципы вычислений в многопроцессорных и многоядерных системах;
- принципы работы кэш-памяти;
 методы повышения производительности многопроцессорных и многоядерных систем;
 - основные энергосберегающие технологии.

Формы и методы контроля и оценки результатов обучения

Входной контроль в форме:

- тестирования по основополагающим понятиям лисциплины.

Текущий контроль в форме:

- устного и письменного опроса;
- самостоятельной работы;
- решения ситуационных задач;
- тестирования по темам.

Рубежный контроль в форме:

- зачетов (письменной и практической работы) по каждому разделу дисциплины.

Итоговый контроль в форме экзамена

Опенка:

- результативности работы обучающегося при выполнении лабораторных, практических и самостоятельных работ;
- оптимальное конфигурирование согласно поставленной задачи.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

6.1. Паспорт фонда оценочных средств по дисциплине

No	Контролируемые разделы (темы) дисциплины	наименование оценочного
Π/Π		средства
1.	Раздел 1. Принципы построения и архитектура ЭВМ	КИМ №1
2.	Раздел 2. Архитектура вычислительных систем	КИМ №2
3.	Весь учебный материал	Итоговый КИМ

Составители (Разработчики):

ГАПОУ ТГЮК, преподаватель компьютерных дисциплин В.В. Кузнецов ГАПОУ ТГЮК, преподаватель компьютерных дисциплин А.В. Канищев